Tuesday, February 24, 2009

Recipe for Finanical Meltdown

Wired | Newsweek


Mix a little fuzzy mathematical equations with abundant greed. Add negligent de-regulated oversight to taste. Simmer with global liquidity until bubble inflates and boil over. Finish with garnish of debts and job loss to create uniform default. Have faith in the experts.


Bond investors also invest in pools of hundreds or even thousands of mortgages. The potential sums involved are staggering: Americans now owe more than $11 trillion on their homes. But mortgage pools are messier than most bonds. There's no guaranteed interest rate, since the amount of money homeowners collectively pay back every month is a function of how many have refinanced and how many have defaulted. There's certainly no fixed maturity date: Money shows up in irregular chunks as people pay down their mortgages at unpredictable times—for instance, when they decide to sell their house. And most problematic, there's no easy way to assign a single probability to the chance of default.
Wall Street solved many of these problems through a process called tranching, which divides a pool and allows for the creation of safe bonds with a risk-free triple-A credit rating. Investors in the first tranche, or slice, are first in line to be paid off. Those next in line might get only a double-A credit rating on their tranche of bonds but will be able to charge a higher interest rate for bearing the slightly higher chance of default. And so on.

The reason that ratings agencies and investors felt so safe with the triple-A tranches was that they believed there was no way hundreds of homeowners would all default on their loans at the same time. One person might lose his job, another might fall ill. But those are individual calamities that don't affect the mortgage pool much as a whole: Everybody else is still making their payments on time.
But not all calamities are individual, and tranching still hadn't solved all the problems of mortgage-pool risk. Some things, like falling house prices, affect a large number of people at once. If home values in your neighborhood decline and you lose some of your equity, there's a good chance your neighbors will lose theirs as well. If, as a result, you default on your mortgage, there's a higher probability they will default, too. That's called correlation—the degree to which one variable moves in line with another—and measuring it is an important part of determining how risky mortgage bonds are.
Investors like risk, as long as they can price it. What they hate is uncertainty—not knowing how big the risk is. As a result, bond investors and mortgage lenders desperately want to be able to measure, model, and price correlation. Before quantitative models came along, the only time investors were comfortable putting their money in mortgage pools was when there was no risk whatsoever—in other words, when the bonds were guaranteed implicitly by the federal government through Fannie Mae or Freddie Mac.
Yet during the '90s, as global markets expanded, there were trillions of new dollars waiting to be put to use lending to borrowers around the world—not just mortgage seekers but also corporations and car buyers and anybody running a balance on their credit card—if only investors could put a number on the correlations between them. The problem is excruciatingly hard, especially when you're talking about thousands of moving parts. Whoever solved it would earn the eternal gratitude of Wall Street and quite possibly the attention of the Nobel committee as well.
To understand the mathematics of correlation better, consider something simple, like a kid in an elementary school: Let's call her Alice. The probability that her parents will get divorced this year is about 5 percent, the risk of her getting head lice is about 5 percent, the chance of her seeing a teacher slip on a banana peel is about 5 percent, and the likelihood of her winning the class spelling bee is about 5 percent. If investors were trading securities based on the chances of those things happening only to Alice, they would all trade at more or less the same price.
But something important happens when we start looking at two kids rather than one—not just Alice but also the girl she sits next to, Britney. If Britney's parents get divorced, what are the chances that Alice's parents will get divorced, too? Still about 5 percent: The correlation there is close to zero. But if Britney gets head lice, the chance that Alice will get head lice is much higher, about 50 percent—which means the correlation is probably up in the 0.5 range. If Britney sees a teacher slip on a banana peel, what is the chance that Alice will see it, too? Very high indeed, since they sit next to each other: It could be as much as 95 percent, which means the correlation is close to 1. And if Britney wins the class spelling bee, the chance of Alice winning it is zero, which means the correlation is negative: -1.
If investors were trading securities based on the chances of these things happening to both Alice and Britney, the prices would be all over the place, because the correlations vary so much.
But it's a very inexact science. Just measuring those initial 5 percent probabilities involves collecting lots of disparate data points and subjecting them to all manner of statistical and error analysis. Trying to assess the conditional probabilities—the chance that Alice will get head lice if Britney gets head lice—is an order of magnitude harder, since those data points are much rarer. As a result of the scarcity of historical data, the errors there are likely to be much greater.
In the world of mortgages, it's harder still. What is the chance that any given home will decline in value? You can look at the past history of housing prices to give you an idea, but surely the nation's macroeconomic situation also plays an important role. And what is the chance that if a home in one state falls in value, a similar home in another state will fall in value as well?

In 2000, while working at JPMorgan Chase, Li published a paper in The Journal of Fixed Income titled "On Default Correlation: A Copula Function Approach." (In statistics, a copula is used to couple the behavior of two or more variables.) Using some relatively simple math—by Wall Street standards, anyway—Li came up with an ingenious way to model default correlation without even looking at historical default data. Instead, he used market data about the prices of instruments known as credit default swaps.
If you're an investor, you have a choice these days: You can either lend directly to borrowers or sell investors credit default swaps, insurance against those same borrowers defaulting. Either way, you get a regular income stream—interest payments or insurance payments—and either way, if the borrower defaults, you lose a lot of money. The returns on both strategies are nearly identical, but because an unlimited number of credit default swaps can be sold against each borrower, the supply of swaps isn't constrained the way the supply of bonds is, so the CDS market managed to grow extremely rapidly. Though credit default swaps were relatively new when Li's paper came out, they soon became a bigger and more liquid market than the bonds on which they were based.
When the price of a credit default swap goes up, that indicates that default risk has risen. Li's breakthrough was that instead of waiting to assemble enough historical data about actual defaults, which are rare in the real world, he used historical prices from the CDS market. It's hard to build a historical model to predict Alice's or Britney's behavior, but anybody could see whether the price of credit default swaps on Britney tended to move in the same direction as that on Alice. If it did, then there was a strong correlation between Alice's and Britney's default risks, as priced by the market. Li wrote a model that used price rather than real-world default data as a shortcut (making an implicit assumption that financial markets in general, and CDS markets in particular, can price default risk correctly).

No comments:

Post a Comment